New Technique Offers Direct Stimulation of Neurons Without External Connections

Greetings,

New Technique Offers Direct Stimulation of Neurons Without External Connections

Using external magnetic fields and injected magnetic nanoparticles, a new technique developed by researchers at MIT could lead to long-lasting localized stimulation of brain tissue without external connections.

New-Technique-Could-Lead-to-Long-Lasting-Localized-Stimulation-of-Brain-Tissue

This video shows a calcium ion influx into neurons as a result of magnetothermal excitation with alternating magnetic fields in the presence of magnetic nanoparticles. Neurons on the right have been heat-sensitized with the capsaicin receptor TRPV1; neurons on the left have not.

Researchers at MIT have developed a method to stimulate brain tissue using external magnetic fields and injected magnetic nanoparticles — a technique allowing direct stimulation of neurons, which could be an effective treatment for a variety of neurological diseases, without the need for implants or external connections.

The research, conducted by Polina Anikeeva, an assistant professor of materials science and engineering, graduate student Ritchie Chen, and three others, has been published in the journal Science.

Previous efforts to stimulate the brain using pulses of electricity have proven effective in reducing or eliminating tremors associated with Parkinson’s disease, but the treatment has remained a last resort because it requires highly invasive implanted wires that connect to a power source outside the brain.

“In the future, our technique may provide an implant-free means to provide brain stimulation and mapping,” Anikeeva says.

In their study, the team injected magnetic iron oxide particles just 22 nanometers in diameter into the brain. When exposed to an external alternating magnetic field — which can penetrate deep inside biological tissues — these particles rapidly heat up.

The resulting local temperature increase can then lead to neural activation by triggering heat-sensitive capsaicin receptors — the same proteins that the body uses to detect both actual heat and the “heat” of spicy foods. (Capsaicin is the chemical that gives hot peppers their searing taste.) Anikeeva’s team used viral gene delivery to induce the sensitivity to heat in selected neurons in the brain…..More Here

Click here for reuse options!
Copyright 2015 Hiram's 1555 Blog

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.